
1 Centricular

Corroded Pipelines

Writing GStreamer Elements in
Rust for Safety and Fun

GStreamer Conference 2016, Berlin

11 October 2016

Sebastian Dröge <sebastian@centricular.com>

mailto:sebastian@centricular.com


2 Centricular

Introduction



3 Centricular

Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched 
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and 

multimedia related software



4 Centricular

What?

● What is Rust?
● Why should we care?
● Writing GStreamer elements in Rust



5 Centricular

Rust



6 Centricular

What is Rust?

● Type-safe, compiled, systems programming language
● Unique* safety guarantees
● Many modern language features usually seen in functional and 

scripting languages
● Zero-cost abstractions & no manual mem management but no GC
● Type system with inference, traits, generics and algebraic data types

● Targeting the same audience as C/C++



7 Centricular

Rust is what C++ should have been*

* and what C++ tries to become, see C++ 17



8 Centricular

Why?

● Writing safe code in C/C++ is hard
● Too many footguns to keep in mind

– Memory management

– Raw pointers, no type-safety
– Undefined behaviour

● Let the compiler help us writing code instead of doing the job of an accountant
– Strict ownership & mutability model

– Compiler assisted, explicit error handling

– But not a proof assistant!



9 Centricular

Why? (2)

● Writing code in C/C++ is missing out on lots of ergonomic 
features of higher-level languages
– Generalized “switch” – pattern matching / destructuring

– (safe) closures & simple usage of higher-order functions

– Algebraic Data Types – type-safe unions/enums on steroids

– …

● Need a full featured standard library
● Also: GObject boilerplate!



10 Centricular

Why? (3)

● Writing low-level, low-overhead code in high-level languages is hard
– GC vs. (even soft) real-time requirements
– VM overhead
– Heavy runtime system

● Need full control over memory if needed
● Need full, cheap and easy access to hardware and existing C code 

if needed



11 Centricular

Why? (4)

● More here in this free O’Reilly book

http://www.oreilly.com/programming/free/why-rust.csp

● Also check the Rust website for all kind documentation, tutorials 
and other useful documents
– https://www.rust-lang.org

http://www.oreilly.com/programming/free/why-rust.csp
https://www.rust-lang.org/


12 Centricular

Why should we care?



13 Centricular

Handling Untrusted Data

● Parsing complicated data structures from untrusted sources
● Need to be more confident about handling broken data

– Prevent buffer overflow

– Memory bugs in error handling

● Majority of CVEs in multimedia related software are exactly that

● Bounds checking, automatic memory management, compiler 
assisted error handling, higher-level parsing abstractions, …



14 Centricular

Multithreading

● GStreamer is heavily multi-threaded
● Getting multi-threaded code right in C is hard

– Deadlocks, race conditions, concurrent data modifications, …

● Explicit mutability, mutexes protecting data instead of code, 
scope based unlocking, simpler to use threading primitives, 
move semantics, higher-level thread-safe data structures, ...



15 Centricular

Ownership Model & Mutability

● Maps 1:1 to our memory, buffer, mini-object mutability model
– One writable reference or multiple readable references

– Copy-on-write

– Built-in language and standard library constructs

● Can move runtime checks to the compiler
● Ownership transfer, etc expressed in the language instead of 

comments in the documentation



16 Centricular

Convenience

● No GObject anymore – Number 1 complaint about GStreamer
● Batteries-included standard library
● More expressive language

– More concise code

– More explicit expression of intent in the code instead of 
documentation

– No manual refcounting / memory management



17 Centricular

But not a magic bullet!

● Your code will not be magically bug-free
– Logic mistakes, (opt-in) unsafe code, …

● But a big category of common bugs can be prevented

● Need bindings for many languages via C
– There are bindings generators



18 Centricular

Writing GStreamer Elements



19 Centricular

First the code

● Can be found here
– https://github.com/sdroege/rsplugin/

● Currently contains
– a file source/sink

– HTTP source

– Start of a demuxer

– Some infrastructure

https://github.com/sdroege/rsplugin/


20 Centricular

How does it work?

● GstElement subclass in C
● Registers the element factory
● Implements all virtual methods, pad event/chain/etc functions
● Each function just directly calls into Rust code

– No actual logic

– No translations, Rust FFI is using C ABI



21 Centricular

How does it work? (2)

● Translation layer in Rust
● Handles GStreamer multi-threading
● Creates Rust wrapper objects
● Translates GStreamer concepts to a much more simplified API

– Wrapper around a use-case specific Rust trait (“interface”)

– Calls back into GStreamer as needed



22 Centricular

How does it work? (3)

● Use-case specific Rust trait and implementations
– Source, Sink, Demuxer

● Single-threaded (external) interface
● Implementation focussed on the use case and not obstructed 

by GStreamer internals
– Think of GstVideoDecoder vs. FFMPEG's AVCodecContext



23 Centricular

How does it work? (4)

● Wrappers for Buffer, Error messages, etc.
● Reimplementation of GstAdapter

– So much simpler!

● Usage of Rust libraries for everything possible
– URI handling, HTTP, parsers, ...



24 Centricular

The Code



25 Centricular

The Future?



26 Centricular

Future? We will see!

● Looks very promising
● Let’s start writing elements in Rust now

– Wrap GStreamer APIs on the way

– Reuse Rust implementations as much as possible

● Let's experiment with nicer APIs for GStreamer elements
– You should also watch Wim's talk before lunch!

● Maybe start rewriting GStreamer API in Rust
● Maybe write GStreamer 2.0 in Rust?



27 Centricular

Thanks!

Any questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

