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Introduction



3 Centricular

Who?

● Long-term GStreamer core developer and maintainer
since 2006

● Did the last few GStreamer releases and probably touched 
every piece of code by now

● One of the founders of Centricular Ltd
– Consultancy offering services around GStreamer, graphics and 

multimedia related software
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What?

● What is Rust?
● Why should we care?
● Writing GStreamer elements in Rust
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Rust
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What is Rust?

● Type-safe, compiled, systems programming language
● Unique* safety guarantees
● Many modern language features usually seen in functional and 

scripting languages
● Zero-cost abstractions & no manual mem management but no GC
● Type system with inference, traits, generics and algebraic data types

● Targeting the same audience as C/C++
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Rust is what C++ should have been*

* and what C++ tries to become, see C++ 17
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Why?

● Writing safe code in C/C++ is hard
● Too many footguns to keep in mind

– Memory management

– Raw pointers, no type-safety
– Undefined behaviour

● Let the compiler help us writing code instead of doing the job of an accountant
– Strict ownership & mutability model

– Compiler assisted, explicit error handling

– But not a proof assistant!
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Why? (2)

● Writing code in C/C++ is missing out on lots of ergonomic 
features of higher-level languages
– Generalized “switch” – pattern matching / destructuring

– (safe) closures & simple usage of higher-order functions

– Algebraic Data Types – type-safe unions/enums on steroids

– …

● Need a full featured standard library
● Also: GObject boilerplate!
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Why? (3)

● Writing low-level, low-overhead code in high-level languages is hard
– GC vs. (even soft) real-time requirements
– VM overhead
– Heavy runtime system

● Need full control over memory if needed
● Need full, cheap and easy access to hardware and existing C code 

if needed
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Why? (4)

● More here in this free O’Reilly book

http://www.oreilly.com/programming/free/why-rust.csp

● Also check the Rust website for all kind documentation, tutorials 
and other useful documents
– https://www.rust-lang.org

http://www.oreilly.com/programming/free/why-rust.csp
https://www.rust-lang.org/


12 Centricular

Why should we care?
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Handling Untrusted Data

● Parsing complicated data structures from untrusted sources
● Need to be more confident about handling broken data

– Prevent buffer overflow

– Memory bugs in error handling

● Majority of CVEs in multimedia related software are exactly that

● Bounds checking, automatic memory management, compiler 
assisted error handling, higher-level parsing abstractions, …
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Multithreading

● GStreamer is heavily multi-threaded
● Getting multi-threaded code right in C is hard

– Deadlocks, race conditions, concurrent data modifications, …

● Explicit mutability, mutexes protecting data instead of code, 
scope based unlocking, simpler to use threading primitives, 
move semantics, higher-level thread-safe data structures, ...
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Ownership Model & Mutability

● Maps 1:1 to our memory, buffer, mini-object mutability model
– One writable reference or multiple readable references

– Copy-on-write

– Built-in language and standard library constructs

● Can move runtime checks to the compiler
● Ownership transfer, etc expressed in the language instead of 

comments in the documentation
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Convenience

● No GObject anymore – Number 1 complaint about GStreamer
● Batteries-included standard library
● More expressive language

– More concise code

– More explicit expression of intent in the code instead of 
documentation

– No manual refcounting / memory management
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But not a magic bullet!

● Your code will not be magically bug-free
– Logic mistakes, (opt-in) unsafe code, …

● But a big category of common bugs can be prevented

● Need bindings for many languages via C
– There are bindings generators
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Writing GStreamer Elements
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First the code

● Can be found here
– https://github.com/sdroege/rsplugin/

● Currently contains
– a file source/sink

– HTTP source

– Start of a demuxer

– Some infrastructure

https://github.com/sdroege/rsplugin/
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How does it work?

● GstElement subclass in C
● Registers the element factory
● Implements all virtual methods, pad event/chain/etc functions
● Each function just directly calls into Rust code

– No actual logic

– No translations, Rust FFI is using C ABI
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How does it work? (2)

● Translation layer in Rust
● Handles GStreamer multi-threading
● Creates Rust wrapper objects
● Translates GStreamer concepts to a much more simplified API

– Wrapper around a use-case specific Rust trait (“interface”)

– Calls back into GStreamer as needed
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How does it work? (3)

● Use-case specific Rust trait and implementations
– Source, Sink, Demuxer

● Single-threaded (external) interface
● Implementation focussed on the use case and not obstructed 

by GStreamer internals
– Think of GstVideoDecoder vs. FFMPEG's AVCodecContext
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How does it work? (4)

● Wrappers for Buffer, Error messages, etc.
● Reimplementation of GstAdapter

– So much simpler!

● Usage of Rust libraries for everything possible
– URI handling, HTTP, parsers, ...
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The Code
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The Future?
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Future? We will see!

● Looks very promising
● Let’s start writing elements in Rust now

– Wrap GStreamer APIs on the way

– Reuse Rust implementations as much as possible

● Let's experiment with nicer APIs for GStreamer elements
– You should also watch Wim's talk before lunch!

● Maybe start rewriting GStreamer API in Rust
● Maybe write GStreamer 2.0 in Rust?
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Thanks!

Any questions?
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