# **Colorspaces and HDMI**

Hans Verkuil Cisco Systems Norway

# **Color Transformations**



#### quantization range

#### Standards

- sRGB: used for computer graphics. Standard: IEC 61966-2-1:1999.
- SMPTE 170M: defines the SDTV colorspace.
- Rec. 709: HDTV colorspace. Standard: Rec. ITU-R BT.709-5.
- Future: BT.2020 for deep-color (>= 10 bits) UHDTV.

|            | Chromaticities | Chromaticities Xfer Func |          |
|------------|----------------|--------------------------|----------|
| sRGB       | Rec. 709       | sRGB                     | Bt.601   |
| SMPTE 170M | SMPTE 170M     | Rec. 709                 | Bt.601   |
| Rec. 709   | Rec. 709       | Rec. 709                 | Rec. 709 |
| Bt.2020    | Bt.2020        | Rec. 709                 | Bt.2020  |

# Limited and Full Range

- Typically 8-bit R', G' and B' values are quantized to the range [0-255]. This is full range quantization. Note: BT.2020 R'G'B' always uses limited range encoding.
- Typically 8-bit Y' values are quantized to the range [16-235] and Cb and Cr values to the range [16-240]. This is limited range quantization.
- But limited range R'G'B' (values in the range [16-235]) and full range Y'CbCr variants exist as well. HDMI can signal both variants.

#### **Common Mistakes**

- Using the wrong chromaticities: e.g. SMPTE 170M instead of Rec. 709. Harmless mistake since these are almost identical and the difference is almost impossible to detect.
- Using the wrong transfer function: e.g. sRGB instead of Rec. 709. Easy to see the difference when seen next to one another, but the average end-user will not detect the difference. An expert on color might, though.
- Using the wrong Y'CbCr encoding: e.g. BT.601 instead of Rec. 709. Easy to see the difference, and savvy end-users will detect such problems.
- Using the wrong quantization range: e.g. full range when it should be limited range. Easy to see the difference, especially in grayscale ramps.

#### SMPTE-170M vs Rec. 709



#### SMPTE-170M vs Rec. 709



#### Rec. 709 vs sRGB Transfer Function



#### Rec. 709 vs sRGB Transfer Function



### Rec. 709 vs BT.601 Y´CbCr Encoding



### Rec. 709 vs BT.601 Y´CbCr Encoding



# Limited vs Full Range Quantization



# Limited vs Full Range Quantization



#### **HDMI: Supported Colorspaces**

- 1. sRGB R'G'B', limited and full range quantization
- 2. SMPTE 170M Y'CbCr, limited and full range quantization
- 3. Rec. 709 Y'CbCr, limited and full range quantization
- 4. xvYCC 709 Y'CbCr, full range (wide gamut Rec. 709)
- 5. xvYCC 601 Y'CbCr, full range (as xvYCC 709, but using BT.601 for Y'CbCr encoding)
- 6. sYCC, limited and full range (= sRGB but using BT.601 Y'CbCr encoding)
- 7. AdobeRGB, limited and full range
- 8. AdobeYCC, limited and full range
- 9. BT.2020 Y'cCbcCrc, limited range (constant luminance)
- 10.BT.2020 RGB, limited range
- 11.BT.2020 Y'CbCr, limited range

### HDMI: Supported Colorspaces

- Y'CbCr available as 4:4:4, 4:2:2 and 4:2:0.
- BT.2020 only available for 10 or 12 bits per component formats (deep color).
- R'G'B' quantization setting: ambiguous if this applies to BT.2020 R'G'B' which is supposed to be limited range.
- Y'CbCr quantization setting: ambiguous if this applies to xvYCC which is supposed to be full range or BT.2020 Y'CbCr since that is supposed to be limited range.
- Note that HDMI doesn't support SMPTE 170M or Rec. 709 R'G'B' formats! These are only available as Y'CbCr formats.

# HDMI Receiver/Transmitter



# **Color Transformations**



# HDMI (CEA-861-F): Choosing the Colorspace

- 1. If the sink cannot receive AVI InfoFrames then:
  - For IT (i.e. non-SDTV/HDTV) timings use full range sRGB.
  - For CE (i.e. SDTV/HDTV) timings use limited range sRGB. God knows why...
  - Actually, for IT timings a transmitter should read the Basic Display Parameters and Feature block of the EDID and use the specified chromaticities.
- 2. If the sink can receive AVI InfoFrames then:
  - Read supported formats and quantization ranges from EDID.
  - If the sink cannot receive Y'CbCr, then use sRGB. If the R'G'B' quantization range cannot be selected, then follow 1, else use the input R'G'B' quantization range.
  - For R'G'B' or Y'CbCr video using the sRGB colorspace: convert Y'CbCr to R'G'B'. The quantization range is full range if the sink can select the R'G'B' range, else follow 1.
  - For R'G'B' or Y'CbCr video using the SMPTE 170M or Rec. 709 colorspace: convert R'G'B' to Y'CbCr. The quantization range is kept if the sink can select the Y'CbCr quantization range, else use limited range.

# HDMI (CEA-861-F): Choosing the Colorspace

- 3. For non-sRGB/SMPTE 170M/Rec. 709 colorspaces:
  - Check if colorspace is supported by the sink (EDID Colorimetry Data Block).
  - sYCC can be converted to sRGB if needed.
  - xvYCC 601 and xvYCC 709 can be converted to Rec. 709 if needed.
  - BT.2020 Y'CbCr can be converted to BT.2020 R'G'B' and vice versa.
  - AdobeYCC can be converted to AdobeRGB and vice versa.
  - sYCC and AdobeYCC should use as defaults limited range for CE formats and full range for IT formats. No mention of AdobeRGB, so I assume as default full range for both CE and IT formats.

#### **Conversion Table**

| From To          | sRGB/R'G'B'/lim | sRGB/R'G'B'/full | 170M/601/lim | 170M/601/full | 709/709/lim | 709/709/full |
|------------------|-----------------|------------------|--------------|---------------|-------------|--------------|
| sRGB/R'G'B'/lim  | ОК              | Convert          |              |               |             |              |
| sRGB/R'G'B'/full | Convert         | ОК               |              |               |             |              |
| sRGB/601/lim     | Convert         | Convert          |              |               |             |              |
| sRGB/601/full    | Convert         | Convert          |              |               |             |              |
| sRGB/709/lim     | Convert         | Convert          |              |               |             |              |
| sRGB/709/full    | Convert         | Convert          |              |               |             |              |
| 170M/R'G'B'/lim  |                 |                  | Convert      | Convert       | Convert     | Convert      |
| 170M/R'G'B'/full |                 |                  | Convert      | Convert       | Convert     | Convert      |
| 170M/601/lim     |                 |                  | ОК           | Convert       | Convert     | Convert      |
| 170M/601/full    |                 |                  | Convert      | ОК            | Convert     | Convert      |
| 170M/709/lim     |                 |                  | Convert      | Convert       | OK          | Convert      |
| 170M/709/full    |                 |                  | Convert      | Convert       | Convert     | OK           |
| 709/R'G'B'/lim   |                 |                  | Convert      | Convert       | Convert     | Convert      |
| 709/R'G'B'/full  |                 |                  | Convert      | Convert       | Convert     | Convert      |
| 709/601/lim      |                 |                  | OK           | Convert       | Convert     | Convert      |
| 709/601/full     |                 |                  | Convert      | OK            | Convert     | Convert      |
| 709/709/lim      |                 |                  | Convert      | Convert       | ОК          | Convert      |
| 709/709/full     |                 |                  | Convert      | Convert       | Convert     | ОК           |

# Summary

- It's a mess!
- Poorly defined, especially when dealing with more obscure colorspaces.
- Limited vs Full Range quantization is hit-and-miss due to different default quantization range choices with IT format vs SDTV/HDTV formats.
- User must be able to override quantization range.
- R'G'B' cannot use SMPTE 170M or Rec. 709, that's only allowed for Y'CbCr.
- Passing video to the GPU: must take colorspaces into account, this can be different for different video sources.
- Due to the complexity of colorspace handling and poorly defined standards many vendors will implement it incorrectly. This makes color handling unpredictable.

#### Resources

- Color Imaging Fundamentals and Applications, Erik Reinhard et. al.
- Digital Video and HDTV Algorithms and Interfaces, Charles Poynton.
- http://www.brucelindbloom.com
- http://hverkuil.home.xs4all.nl/spec/media.html#colorspaces
- CEA-861-F: Consumer Electronics Association (http://www.ce.org). A DTV Profile for Uncompressed High Speed Digital Interfaces.
- HDMI 2.0a: HDMI Licensing LLC (http://www.hdmi.org). High-Definition Multimedia Interface. Specification Version 2.0a.

# Questions?

